The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress

نویسندگان

  • Olga Krupkova
  • Junichi Handa
  • Marian Hlavna
  • Juergen Klasen
  • Caroline Ospelt
  • Stephen John Ferguson
  • Karin Wuertz-Kozak
چکیده

Oxidative stress-related phenotypic changes and a decline in the number of viable cells are crucial contributors to intervertebral disc degeneration. The polyphenol epigallocatechin 3-gallate (EGCG) can interfere with painful disc degeneration by reducing inflammation, catabolism, and pain. In this study, we hypothesized that EGCG furthermore protects against senescence and/or cell death, induced by oxidative stress. Sublethal and lethal oxidative stress were induced in primary human intervertebral disc cells with H2O2 (total n = 36). Under sublethal conditions, the effects of EGCG on p53-p21 activation, proliferative capacity, and accumulation of senescence-associated β-galactosidase were tested. Further, the effects of EGCG on mitochondria depolarization and cell viability were analyzed in lethal oxidative stress. The inhibitor LY249002 was applied to investigate the PI3K/Akt pathway. EGCG inhibited accumulation of senescence-associated β-galactosidase but did not affect the loss of proliferative capacity, suggesting that EGCG did not fully neutralize exogenous radicals. Furthermore, EGCG increased the survival of IVD cells in lethal oxidative stress via activation of prosurvival PI3K/Akt and protection of mitochondria. We demonstrated that EGCG not only inhibits inflammation but also can enhance the survival of disc cells in oxidative stress, which makes it a suitable candidate for the development of novel therapies targeting disc degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigallocatechin 3-gallate suppresses interleukin-1β-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats.

Intervertebral disc (IVD) disease, which is characterised by age-related changes in the adult disc, is the most common cause of disc failure and low back pain. The purpose of this study was to analyse the potential of the biologically active polyphenol epigallocatechin 3-gallate (EGCG) for the treatment of painful IVD disease by identifying and explaining its anti-inflammatory and anti-cataboli...

متن کامل

Resveratrol attenuates L-DOPA-induced hydrogen peroxide toxicity in neuronal cells.

A variety of polyphenol antioxidant compounds derived from natural products have demonstrated neuroprotective activity against neuronal cell death. The objective of this study was to investigate the effect of resveratrol (RESV) and bioflavonoids in attenuating hydrogen peroxide (H(2)O(2))-induced oxidative stress in neuronal cells. H2O2 levels were increased by the addition of L-3,4-dihydroxyph...

متن کامل

Chronic Oral Epigallocatechin-gallate Alleviates Streptozotocin-induced Diabetic Neuropathic Hyperalgesia in Rat: Involvement of Oxidative Stress

Due to the anti-diabetic and antioxidant activity of green tea epigallocatechin-gallate (EGCG), this research study was conducted to evaluate, for the first time, the efficacy of chronic treatment of EGCG on alleviation of hyperalgesia in streptozotocin-diabetic (STZ-diabetic) rats. Male Wistar rats were divided into control, diabetic, EGCG-treated-control and diabetic and sodium salicylate (SS...

متن کامل

(-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes.

(-)-Epicatechin-3-gallate (ECG) is a polyphenolic compound similar to (-)-epigallocatechin-3-gallate (EGCG) which is abundant in green tea. Numerous workers have proposed that EGCG protects epidermal cells against UVB-induced damage. However, little has been known about whether ECG protects keratinocytes against UVB-induced damage. We decided to investigate the protective effects and underlying...

متن کامل

Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex) and its major functional polyphenol (-)-epigallocatechin gallate (EGCG) on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX) significantl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016